mitt rOMNI
Course
My Role
Skills
Team Members
Computer-Aided Mechanical Engineering Design
Mechanical Engineer
Rapid prototyping
Solidworks
FEA
Machine Shop
Assembly
Sharon Bian
Rebecca Conway
Ellie Ng
To design and build a human-powered vehicle that can move in any direction while facing any direction and achieve a zero-turn radius. Vehicles were also required to fit within a 3'x3'x3' box and weigh less than 75 pounds. They were put to the test by completing the 3 courses below.
My team's final vehicle, named mitt rOMNI, features a drive system inspired by a handcar mechanism. It uses pedals to power a 3-bar linkage system that turns a set of sprockets to drive one of the front wheels while the other rotates passively. The pedals were offset by 90 degrees to prevent stalling at the top and bottom of each stroke. The front driver can move both forward and backwards, and this combined with two rear caster wheels allows our vehicle to achieve omnidirectionality.
​
The chassis is made of wood-foam composite and features several rows of slots so the chair can be inserted at different distances from the pedals to accommodate riders of different heights.
Challenge Completed
Our vehicle successfully completed all 3 courses
Lightest Vehicle
Weighed only 57 pounds, with a 30 pound difference in the next ranked vehicle
Lowest material cost
Out of 5 teams, our vehicle had the lowest material cost
Most Unique Drive System
While all other teams utilized bevel gearboxes, we achieved omnidirectionality with a unique linkage system
Ideation & Prototyping
We started the brainstorming process by ideating various mechanisms to drive the vehicle​. One of our most promising ideas was a handcar-inspired design, so we created small scale laser cut and foam core prototypes to test its feasibility. These prototypes verified that this linkage system would work.
Analysis
After verifying that this mechanism would work, we used Sketch Blocks in Solidworks to determine the proper linkage ratios that would fit within the size constraint of the vehicle and not come in contact with the floor when driven. We also performed FEA on the chassis and other subassemblies of our vehicle. Based on these, we made adjustments to avoid failure and increase safety for riders. For example, through our FEA, we found that the front neck of our chassis experienced the greatest stress concentration under the load of a rider, so we reinforced that area by replacing the foam with a pine block.
Fabrication